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ABSTRACT 

Active camber control system is very promising method for handling performance improvement 

specially for three wheels vehicles. This paper is the first part of a comprehensive study related to 

the development of a suspension control system applied to a tadpole vehicle utilizing active camber 

control system. The effect of the vehicle configuration is studied, as well as slip angle effect on 

vehicle dynamics. Matlab/Simulink ride/handling models including viscus damping and coulomb 

friction are established to study the effect of changing the camber angle and wheel steering inputs 

on different vehicle handling parameters. The results showed noteworthy improvement for yaw 

angle response, rollover, and lateral acceleration threshold. Notable stable and safer cornering 

performance proved to be achievable. 
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INTRODUCTION 

Traffic problems and expected rising of the fuel cost, drive the need to design light and small 

vehicles, which, is the current challenge to automotive industry as well as to the R&D engineers. In 

fact, the awareness for such challenge has been strongly growing up for some time. Further, global 

warming and the rising screams for lowering air pollution made the EU Environment Agency to set 

targets to reducing overall cars emissions in 2015 to 130 [g CO2/km], which have been achieved, 

and 95 [g CO2/km] by 2021. New targets were set for 2025 and 2030 as 15% ND 37.5% reductions, 

repetitively based on 2021 CO2 emission level [1]. 

 

Due to low fuel consumption of the three wheeled cars, they could be very effective and a magic 

solution to the growing problems. Three wheels vehicles satisfy these needs as being small, having 

low emissions, and low fuel consumption due to their light weight and low aerodynamic drag, but 

they have major stability drawback, particularly during cornering.  

When the car is cornering at high speed, the resulting centrifugal force tends to alter the car stability 

causing side skid or even tipping it over in some cases. 

 

To improve the cornering stability, many methods are being applied. Road cambering 

(Superelevation) is one of the important methods to take in consideration during designing roads 

[2,3]. It helps to incline the vehicle to counteract the centrifugal force effect. The speed limit, is 

another method, helps to prevent losing control on the vehicles while turning. Away from external 
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assist and regulations to avoid problems and accidents, many efforts have been done to develop the 

passive suspension to achieve more safe vehicles with higher ride quality [4-10].  

In cornering stability field, active camber control and body tilting mechanism are highly research 

and development topics due to their promising results [12-16]. Choosing between active camber 

control or body tilting highly depends on the vehicle usage. If the vehicle is designed for harsh 

manoeuvring at high speeds, body tilting mechanism control would be preferred. If the vehicle is 

designed for normal conditions and city drive, camber control would be preferred [17]. Depending 

on the suspension type, many camber angle control mechanisms were introduced. Nemeth, et all, 

discussed the camber control mechanism and the control design using McPherson suspension [18]. 

On the other hand, camber control mechanisms were introduced into double wishbone suspension 

system due to its simplicity [19-21]. 

 

1 VEHICLE MODEL 

Bicycle model is often considered as the most simplified vehicle handling model and many theories 

and research works have been built using such model [11]. Drawbacks of the bicycle model are the 

negligence of the effects of vehicle suspension associated dynamics and nonlinearity of tires 

cornering stiffness. Quarter and half car model were often adopted on ride study [22]. Along with 

the automotive industry rapid development, more complicated 3D full car model simulations 

including suspension and tire dynamics were investigated [16,23,24]. However, examination of two 

configurations of 3D models of three-wheel vehicles are given in following. 

 

 

 
Figure (1) A 3-wheel delta configuration vehicle 3D rollover model [25]. 

From Figure (1) the following relations are deduced [25]. 

𝑅1 =  
𝐿

𝑡𝑎𝑛 𝛿 
 𝑎𝑛𝑑 𝑅𝑐.𝑔 =  √𝐿2 + 𝑅1

2                                                (1) 
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To find the rollover speed, moments about line OF, ƩMOF = 0 gives:𝑉𝑟𝑜𝑙𝑙 =  √
𝑗 𝑔 𝑅𝑐.𝑔

ℎ𝑐.𝑔 c𝑜𝑠 𝜀 
           (2) 

where;  𝑗 =  
0.5 𝑏 𝑙1 

√𝐿2+ (
𝑏

2
)

2
 , 𝜀 =  𝜑 −  𝜆 , 𝜑 =  

2𝐿

𝑏
     𝑎𝑛𝑑 𝜆 =  

𝑙2

𝑅𝑐.𝑔
 =  

𝑅1

𝑙2
    

 

2.1 Vehicle Configuration Selection 

From the aerodynamics point of view, tadpole body configuration can match the aerofoil shape 

easily than delta. For braking force distribution, more front capacity is available in case of tadpole 

than delta. Hence, tadpole configuration is preferred for braking. In tadpole with rear wheel drive, 

no differential is needed, and a lighter vehicle can be achieved. 

To examine the dynamic stability during cornering manoeuvre, the rollover speed is calculated for 

both configurations and the results are discussed in the following.  

 

2.1.1 Delta Configuration 

Figure (1) shows a 3-wheel delta configuration vehicle 3D rollover model. The local vehicle 

axes, the dynamic forces, the wheel reactions, and the global axes as well as the dimension 

symbols are shown on the figure. Moreover, the definitions of each symbols are given in the 

nomenclature table.2.1.2 Tadpole Configuration 

Figure (2) shows a 3-wheel tadpole configuration vehicle rollover model. The local vehicle axes, 

the dynamic forces, the wheel reactions, and the global axes are shown on the figures.  

 
Figure (2) A 3-wheel tadpole configuration vehicle rollover model. 

From Figure (2), the following relations are deduced.  

𝐿 = 𝑎 + 𝑏, 𝑅2 =  
𝐿

𝑡𝑎𝑛  𝛿3 
+

𝑇

2
     𝑎𝑛𝑑     R =  √b2 +  𝑅2

2                            (3) 

To find the rollover speed, moments around line OF, ƩMOF = 0 gives: 𝑉𝑟𝑜𝑙𝑙 =  √
𝑗 𝑔 𝑅

H 𝑐𝑜𝑠 𝜀 
                 (4) 

where    𝑗 =  
0.5𝑇 a 

√𝐿2+ (
𝑇

2
)

2
,   𝜀 =   𝜃 +  𝜃′,  𝜃′ = 𝑗/𝑏  , 𝑎𝑛𝑑 𝜃 =  b/𝑅2  

Figure (3) shows the variations of rollover speed and the turning radius of c.g. versus steering angle 

input for both delta and tadpole configuration models. It worth mentioning here that, the wheel 

track, the wheelbase, height of the c.g. and GVM values are the same for both models. It is obvious 
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that tadpole Vroll has higher values than that of the delta configuration over the range of the steering 

angle input. The difference increases as the steering angle increases. Therefore, tadpole 

configuration is more stable in cornering manoeuvres (keeping in mind all hypotheses made for the 

two models). 

Figure (3) Relationship between rollover speed, turning radius 

vs steering angles for tadpole and delta configurations. 

 

2.2 Model Simplifications 

Due to the lateral load transfer, specially at the verge of rollover, the vertical load on the inner front 

tire diminishes, henceforth its capability to create slip angle. Therefore, α3 is considered equal to 

zero. 

2.2.1 Slip Angle Calculation 

Based on the model shown in Figure (4), front and rear tire slip angle values are calculated at 

different steering angles for the tadpole configuration. 

In triangle OAC. 

𝑂𝐶 = 𝑅, 𝐴𝐶 =  √(
𝑇

2
)

2

+ a2 , and  𝐶𝐴̂𝑂 = (90 − 𝛿3) + (
𝑇/2

a
)  

From which.  

 𝐴𝑛𝑔𝑙𝑒 𝐴𝑂̂𝐶 =  [
𝑠𝑖𝑛 (𝐶𝐴̂𝑂)× √(

𝑇

2
)

2
+ a2

𝑅
]   , 𝐴𝐶̂𝑂 = (𝜋 −  𝐶𝐴̂𝑂 −  𝐴𝑂̂𝐶),   𝑎𝑛𝑑 𝑅3 =  

𝑅𝑠𝑖𝑛 𝐴𝐶̂𝑂 

𝑠𝑖𝑛 𝑂𝐴̂𝐶 
        (5) 

In triangle OAD:  𝑂𝐴 =  𝑅3, 𝐷𝐴̂𝑂 =
𝜋

2
−  𝛿3 + 𝜓, 𝑎𝑛𝑑   𝐴𝐷 =  √(

𝑇

2
)

2

+  𝐿2 

Hence; 𝑂𝐷 = 𝑅2 = √𝐴𝐷2 + 𝑅3
2 − 2𝐴𝐷 ∗ 𝑅2 cos(𝐷𝐴̂𝑂) , 𝑂𝐷̂𝐴 = cos−1 (

𝑅2
2+𝐴𝐷2−𝑅3

2

2𝐴𝐷∗ 𝑅2
) =

𝜋

2
− 𝛼𝑟 −  𝜓 (6)      

From equation (6) αr can be obtained.  

In triangle ABO: 𝐴𝐵 = 𝑇   ,   𝐴𝑂 =  𝑅3 and 𝐵𝐴̂𝑂 = 𝜋 −  𝛿3 

Following similar approach αf = α1 can be obtained from equation (7). 

𝑅1 = √𝑇2 + 𝑅3
2 − 2𝑇𝑅3 cos(𝐵𝐴̂𝑂) , 𝐴𝐵̂𝑂 = cos−1 (

𝑇2+𝑅1
2−𝑅3

2

2𝑇𝑅1
) =  𝛿1 −  𝛼𝑓             (7) 

As shown in Figure (5), αf and αr have small values specially at high cornering radiuses which are 

more realistic. Moreover, the difference between the two angles is very small and hence can be 

neglected. Noteworthy, the crossover point occurs at 𝛿𝑓 ≅
𝐿

𝑅
 which can be considered as optimum 

steering angle value. 
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Figure (4) A 3-wheel tadpole configuration vehicle model in xcg-ycg plane. 

 

(a) R = 5 [m] (b) R = 25 [m] 

 
(c) R = 50 [m] 

 
(d) R = 100 [m] 

Figure (5) Front and rear wheels slip angles vs Steering angle. 
2.2.2 Cornering force direction  

From Figure (4), the cornering force inclination to vertical axis, ɵ can be obtained as follows. 

𝜃 =
𝜋

2
− 𝐴𝐶̂𝑂 − (

𝑇/2

a
)                                                          (8) 
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The cornering force inclination angle was calculated at different steering angle for four road 

curvature radiuses as shown in Figure (6). The result shows that  has small value (less than 10o) for 

steering angle less than 10o and this result is not affected by the curvature radius value. Hence, its 

proved that the cornering force is almost perpendicular to vehicle x-axis at small steering angle 

values. 

 

 
Figure (6) Lateral force direction with vertical axis vs steering angle at different radii. 

 
2.3 Mathematical Model 

Full car model was applied with the following simplifications as shown in Figure (7). Tire stiffness 

coefficient was assumed to be constant (linear tire model), slip angles were neglect, c.g and roll 

centre were assumed to be at fixed place (ignoring weight transfer), and based on the result on 

Figure (6), cornering force is assumed to be perpendicular to vehicle x-axis when applying small 

steering input. The following relations are deduced. 

Lateral forces equation: 

𝑚 ( 𝑉𝑦̇ +  𝑉𝑥𝑟) =  𝐹𝑦1 +  𝐹𝑦2 +  𝐹𝑦3 , where 𝐹𝑦𝑛 = (𝐶𝛼𝑛𝛼𝑛 + 𝐶𝛾𝑛𝛾𝑛) ×  𝑐𝑜𝑠 𝛿𝑛               (9) 

While Cγ is the cambering stiffness and assumed to equal 0.2 Cα, [11] and 𝛿𝑛 is the steering angle 

for the tire number (n). The steering is only applied on front wheels so 𝛿2=0 while the relation 

between front tires is given by; 

𝑐𝑜𝑡 (𝛿1) − 𝑐𝑜𝑡 (𝛿2) =  
𝐵

𝐿
                                                      (10)  

Where; 𝛼1 =  𝛿1 −  (
𝑉𝑦+𝑎𝑟

𝑉𝑥
) ,  𝛼2 =  𝛿2 − (

𝑉𝑦−𝑏𝑟

𝑉𝑥
)  𝑎𝑛𝑑 𝛼3 =  𝛿3 −  (

𝑉𝑦+𝑎𝑟

𝑉𝑥
)                               (11)   

Yaw equation: 

𝐼𝑧𝑟̇ = 𝑎 ( 𝐹𝑦1 +  𝐹𝑦3) − 𝑏 𝐹𝑦2                                            (12) 

 
Figure (7) A 3-wheel tadpole vehicle dynamic model in xcg-ycg and zcg-ycg planes [16]. 

 

Roll equation: 

For the roll mathematical model, 2 models are inspected: (a) linear model and (b) non-linear model 

with coulomb friction [26, 27] together with different values for the rebound and compression 

damping coefficients.  
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(a) Linear roll equation: 

𝐼𝑥𝜑̈ + 𝐶𝑡𝜑̇ + (𝐾𝑡 − 𝑚𝑠𝑔ℎ)𝜑 = −𝑚𝑠ℎ (𝑉𝑦̇ + 𝑉𝑥𝑟)                              (13) 

Figure (8) shows spring and damper forces direction so the following equations can be deduced. 

𝐹𝑠𝑝 = 𝐾𝑠𝑝 × 𝑑    ,    𝐹𝑑 =  𝐶𝑠𝑝 × 𝑑′                                          (14) 

Where; 𝑑 =  
𝑇

2
× 𝑠𝑖𝑛 (∅)  ,and 𝑑 =  

𝑇

2
×  ∅    ,    𝑑′ =  

𝑇

2
× ∅̇ 

 
Figure (8) Spring and Damper Forces direction. 

The spring and damper moments can be deduced as follows. 

𝑀𝑠 = 𝐹𝑠𝑝 ×  
𝑇

2
+ 𝐹𝑠𝑝 ×  

𝑇

2
=  𝐹𝑠𝑝 × 𝑇 =  

𝑇2

2
× 𝐾𝑠𝑝 × ∅                               (15)  

𝑀𝑑 =  𝐹𝑑 ×  
𝑇

2
+  𝐹𝑑 × 

𝑇

2
=  𝐹𝑑 × 𝑇 =  

𝑇2

2
× 𝐶𝑠𝑝 × ∅̇                                (16) 

Where; 𝐾𝑡 =  
𝑇2

2
× 𝐾𝑠𝑝,      𝐶𝑡 =  

𝑇2

2
×  𝐶𝑠𝑝 

(b) Non-linear roll equation. with Coulomb friction [26, 27] 

𝐼𝑥𝜑̈ + 𝐶𝑐𝐿 ×
𝐿

2
𝜑̇ + 𝐶𝑟𝐿 ∗

𝐿

2
𝜑̇ + 𝜇𝑓𝑠𝑢𝑠𝐿𝜑̇ + 𝐾𝑠

𝑛𝐿𝜑 + (𝐾𝑡 − 𝑚𝑠𝑔ℎ)𝜑 =  − 𝑚𝑠ℎ (𝑉𝑦̇ +  𝑉𝑥𝑟)     (17) 

And by assuming that 𝐶𝑟 = 2.5 𝐶𝑐, then; 

𝐼𝑥𝜑̈ + 𝐶𝑐
3.5𝐿2

4
𝜑̇ + 𝜇𝑓𝑠𝑢𝑠𝐿𝜑̇ + 𝐾𝑠

𝑛𝐿𝜑3 + (𝐾𝑡 − 𝑚𝑠𝑔ℎ)𝜑 =  − 𝑚𝑠ℎ (𝑉𝑦̇ +  𝑉𝑥𝑟)            (18) 

Where; 

● Cc; Compression damping stiffness and Cr: rebound damping stiffness. 
● µ; Coulomb friction constant and is taken equal 1. 
● fsus; fraction from the sprung mass weight =0.1Ms×g. 
● Ks

n; nonlinear stiffness coefficient. 

  
Figure (9) Coulomb friction addition effect on roll angle. 

 
Figure (9) shows that the roll angle reaches steady state value of 7.624o in case of applying linear 

roll equation, Equation (13), while in case of applying non-linear roll equation by adding the 

coulomb friction consideration, Equation (18), the steady state is reached at 7.424o which gives 

2.6% error, then the coulomb friction effect can be neglected. 

 

Lateral acceleration threshold  

Two cases of camber angle control are studied, the first one is controlling all wheel angles, while 

the second one is considered as special case from the first one, where only front wheels are 

controlled. Figure (10) shows Changes upon applying camber angle to three wheels. As shown, the 

most important direction parameters for improving lateral acceleration are outer wheel leaning 

towards the turn and the rear wheel leaning outward the turn to maximise the parameter h". The 

inner wheel has zero load in case of tipping over, then its leaning direction has no impact. From 

figure (10) the following equations can be deduced. 
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𝜃1 =  (

𝑇
2 + 𝑟𝑠𝑖𝑛 (𝛾1) 

𝐿 + 𝐾
) , 𝐾 =  

𝑟 𝑠𝑖𝑛 𝛾2 

𝑡𝑎𝑛 𝜃1 
=

2𝐿𝑟 𝑠𝑖𝑛 𝛾2 

𝑇 + 2𝑟(𝑠𝑖𝑛 𝛾1 − 𝑠𝑖𝑛 𝛾3)
, 𝑞 = ℎ × 𝑠𝑖𝑛 (∅)  

, ℎ′′ = (𝑏 + 𝐾) 𝑠𝑖𝑛 𝜃1  =  
𝑏 (𝑇+2𝑟 𝑠𝑖𝑛𝑠𝑖𝑛 𝛾1 )

2(𝐿+𝐾)
𝑐𝑜𝑠 𝜃1   , and  

𝑝 = ℎ (1 −  𝑐𝑜𝑠 (∅) ) + 
𝑏

𝐿
× [

1

2
 𝑟 ((1 − 𝑐𝑜𝑠 𝛾3 ) + (1 − c𝑜𝑠 𝛾1 ))] + 𝑟(1 − 𝑐𝑜𝑠 𝛾2 )        (19) 

To calculate the lateral acceleration threshold due to the new suspension geometric change, the 

moment about rollover axis is applied. 

[𝑚𝑔 ∗ (ℎ′′ −  𝑞)] − [ (𝑚𝑎𝑦 𝑐𝑜𝑠 𝜃1  − 𝑚𝑎𝑥𝑠𝑖𝑛 𝜃1 ) ∗ (𝐻 − 𝑝)] = 0                (20) 

From equations (19 & 20) Then; 

𝑎𝑦 =  
(𝑇+2𝑟 𝑠𝑖𝑛 𝛾1 )(𝑏+𝐾)𝑔𝑐𝑜𝑠 𝜃1 −2(𝐿+𝐾)ℎ𝑔 𝑠𝑖𝑛 ∅ 

2(𝐿+𝐾)𝑐𝑜𝑠 𝜃1 ∗ [𝐻−ℎ (1− 𝑐𝑜𝑠 (∅) )− 
𝑏

𝐿
∗[

1

2
 𝑟 ((1−𝑐𝑜𝑠 𝛾3 )+(1−𝑐𝑜𝑠 𝛾1 ))]−𝑟(1−𝑐𝑜𝑠 𝛾2 )]

+
𝑎𝑥 𝑠𝑖𝑛 𝜃1 

𝑐𝑜𝑠 𝜃1 
        (21) 

Where ϕ is the threshold yaw angle and from Equation (13), it can be given by; |∅𝑡ℎ| =  
𝑚 𝑎𝑦ℎ

(𝑚𝑔ℎ −𝐾𝑡)
 

 
Figure (10) Changes upon applying camber angle to three wheels [16]. 

Figure (11) shows case two where one positive and one negative camber angle when applied to the 

front wheels. As mentioned before the inner wheel angle sign is not important when studying 

rollover threshold. Hence, by setting the rear wheel camber angle, γ2 to zero at equation (21), The 

lateral acceleration threshold can be determined by equation (22).  

𝑎𝑦 =  
(𝑇+2𝑟𝑠𝑖𝑛 𝛾1 )𝑏𝑔𝑐𝑜𝑠 𝜃𝑛 −2𝐿ℎ𝑔𝑠𝑖𝑛 ∅ 

2𝐿𝑐𝑜𝑠 𝜃𝑛 × [𝐻−ℎ {1− 𝑐𝑜𝑠 (∅) }− 
𝑏𝑟

2𝐿
×[2−𝑐𝑜𝑠 𝛾3 −𝑐𝑜𝑠 𝛾1 ]]

+
𝑎𝑥 𝑠𝑖𝑛 𝜃𝑛 

𝑐𝑜𝑠 𝜃𝑛 
                           (22) 

 

3 CASE STUDY  

Steering wheel input δ1 and camber angle with 2 seconds time lag between applying them are 

considered as main time variant inputs to the model as shown in Figure (12). 

 
Figure (11) Changes upon applying one positive and one negative camber angle to the front wheels [16]. 
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A constant 50 [m] turning radius is considered during the study. Moreover, another studying criteria 

is the C.G height effect. The results were plotted at 2 different H values, H = 0.5 [m] and H = 0.6 

[m]. 

  
Figure (12) Steering input δ1 vs time (a) and camber angle γ1 vs time (b). 

 

2 SIMULATION RESULTS 

Tables (1 and 3) show how camber angle improves the vehicle lateral acceleration threshold for 

both studying cases, H = 0.5 [m] and H = 0.6 [m]. However, lateral acceleration has maximum limit 

depending on side skid threshold. Hence, lateral acceleration threshold must be equal or below the 

skid limit to be applicable. γ1 and γ are front wheels camber angle, and they are assumed to have 

equal values and direction to produce camber thrust to resist the centrifugal force, while γ2 is the 

rear wheel camber angle. The negative sign of camber angle values refers to that the rear wheel 

should lean outward the turning path to cause improvement as previously mentioned. The maximum 

speed is also calculated based on 50 [m] turning radius according to the following relation 𝑎𝑦 =

 𝑉2/𝑅.  

Tables (2 and 4) show the cases which fulfils a 50 [m] turning radius, noted that when only front 

wheels are cambered, they have a steering effect, while in case of all wheels cambered the steering 

effect vanishes. The yellow shaded cases are the chosen cases to be investigated. 

 

Table (1) Lateral acceleration threshold for different camber angle values at H 0.5 [m]. 

γ1
o γ3

o γ2
o 

Lateral acceleration 

Threshold in g unit 

Side Skid 

Threshold 

Improvement 

Percentage 

Vmax in [km/h] for 

R= 50 [m] 

0 0 0 0.73  

0.8 g 

0 68.25 

+5 +5 0 0.76  3.60 69.50 

+10 +10 0 0.79  7.50 70.77 

+15 +15 0 0.82  9.04 71.30 

+20 +20 0 0.85  9.04 71.3 

+5 +5 -5 0.78  7.40 70.73 

+10 +10 -10 0.85  9.04 71.30 

+15 +15 -15 0.91 9.04 71.30 

+20 +20 -20 0.98 9.04 71.30 

 

Table (2) Maximum speed for different study cases at H = 0.5 [m]. 

Case V [km/h] δ1 o γ1
o γ3

o γ2
o 

1 68.3 2.03 0 0 0 

2 69.5 1.05 +5 +5 0 

3 70.8 0.06 +10 +10 0 

4 71.3 0 +10.3 +10.3 0 

5 70.7 2.03 +5 +5 -5 

6 71.3 2.03 +10 +10 -10 

7 71.3 2.03 +15 +15 -15 

8 71.3 2.03 +20 +20 -20 
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Table (3) Lateral acceleration threshold for different camber angle values at H = 0.6 [m]. 

γ1
o γ3

o γ2
o 

Lateral acceleration 

Threshold in g unit 

Side Skid 

Threshold 

Improvement 

Percentage 

Vmax [km/h] 

R= 50 [m] 

0 0 0 0.58 

0.8g 

0 60.6 

+5 +5 0 0.60 3.7 61.7 

+10 +10 0 0.62  7.4 62.8 

+15 +15 0 0.64  11.3 63.9 

+20 +20 0 0.67 15.3 65.1 

+5 +5 -5 0.62 6.9 62.8 

+10 +10 -10 0.66 14.9 64.9 

+15 +15 -15 0.71 23.3 67.3 

+20 +20 -20 0.77 32.4 69.8 

 

Table (4); Maximum speed for different study cases at H = 0.6 [m]. 

Case V [km/h] δ1 o γ1
o γ3

o γ2
o 

Case 1 60.6 2.03 0 0 0 

Case 2 62.8 0 +10.3 +10.3 0 

Case 3 69.8 2.03 +20 +20 -20 

 

Figure (13) shows lateral acceleration threshold taking in consideration the skidding threshold. As 

seen in case of H = 0.5 [m], which is more stable vehicle, small camber angles can be applied, while 

for H = 0.6 [m] a 20o camber angle applied to all wheels can be applied to improve lateral 

acceleration threshold. Moreover, if the hydraulic actuator can afford higher camber angle, it can be 

applied to achieve higher lateral acceleration threshold. 

 

  
Figure (13) Lateral acceleration threshold vs time at (a) H= 0.5 [m] and (b) H = 0.6 [m]. 

 

Figures (14-16) shows roll angle, lateral acceleration, and yaw rate vs time for all the studied cases. 

The camber angle control system shows overall handling performance improvement. In case of H = 

0.5 [m], case 4 and case 8 gives the same steady state improvement as both reach the ultimate 

lateral acceleration threshold. While for transient roll angle and lateral acceleration responses, case 

4 reaches the steady state without overshoot as in case of case 8. 

For yaw rate response, no overshoot occurs at both cases but it worth mentioning that case 8 

reached steady state 2 seconds faster than case 4. The camber angle control effect is more obvious 

in case of H = 0.6 [m] than H = 0.5 [m]. The performance is improved as the camber angle 

increases specially when all wheels are cambered. 
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Figure (14) Roll angle vs time at (a) H= 0.5 [m] and (b) H = 0.6 [m]. 

  
Figure (15) Lateral acceleration vs time at (a) H= 0.5 [m] and (b) H = 0.6 [m]. 

 

  
Figure (16) Yaw rate vs time at (a) H= 0.5 [m] and (b) H = 0.6 [m]. 

 

CONCLUSIONS 

● Tadpole configuration is more stable in cornering performance. 
● The difference between αf and αr is very small, hence can be neglected especially for low 

steering angle input. 
● The cornering force is almost perpendicular to vehicle x-axis at small steering angle values. 
● Only 2.6 % error in roll angle value was obtained when adding coulomb friction, then the 

effect of the coulomb friction can be neglected. 
● The inner wheel has no road reactions at the verge of rollover, then its leaning direction has 

no impact. 
● To improve lateral acceleration, outer wheels should be leaning towards the turn, while the 

rear wheel should be leaning outward the turn. 
● When only front wheels are cambered, they have a camber steering effect, while in case of all 

wheels cambered the steering effect diminishes. 
● The handling performance in terms of rollover speed is improved as the camber angle 

increases specially when camber control is applied to all wheels. Lateral acceleration 

threshold is increased as camber angle increases but the skidding threshold should be taken 

into consideration. 
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