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ABSTRACT 

The present work proposes gripper design to guarantee secure grasp of the object. For the 

It is aimed to control the sliding of the object on the surface of the gripper and prevent the 

excessive increase of the gripping force. The feedback of the proposed system depends on 

the triboelectrification and generates positive and negative ESC at the two contact 

surfaces.  Separation of the two contact surfaces represents the condition of slip or sliding 

of the object, then one of the surfaces will gain positive ESC and voltage difference will be 

induced. ESC generated on one of the surfaces works as feedback signals to increase the 

gripping force by increasing the input voltage of the copper coil, where the magnitude of 

the electric field increases and consequently the adhesion force between the gripper and 

object increases so that the object can be grasped tightly. 
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INTRODUCTION 

There is an increasing demand to securely grip objects. Human can grasp the objects with 

the hand that are controlled by the brain.  The proper grip force is controlled by the tactile 

feedback from the fingers, [1], to securely handle objects, [2, 3]. In gripper, the  grip force 

control system significantly control object manipulation, adjusting grip force to guarantee 

secure grip, [4]. In absence of the grip force control system, the risk of dropping or 

crushing the object is raising. In harvesting fruits, [5 - 8], controlled grip force is needed 

to handle objects. Applying excessive grip force, [9-12], can damage those objects. The grip 

force was controlled by force controller depends on the load force feedback, [13 - 20], 

where load cell was used to measure the grip and the tangential force applied on the two 

fingers of robotic gripper considering static friction, [21 - 26]. To achieve precise grip force 

control system, static coefficient of friction, grip force and weight of the object should be 

considered. The objective function of the control system was formulated, [18], as a 

combination of the gripping force for the gripper stroke and the ratio between the 

actuating force and the output minimum gripping force. 
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In the present work, a gripper design for a specific function is proposed. The objective 

function of the design is to guarantee secure grasp of the object. Besides, the increase of 

system reliability, reducing gripper cost and the capability of a gripper for grasping 

objects of different dimensions are aimed. 

 

PROPOSED DESIGN OF THE GRIPPER 

The proposed gripper is shown in Fig. 1, where the schematic drawings of the working 

mechanism is illustrated.  ESC distribution on the surfaces of the gripper and object is 

demonstrated in the contact and separation, Figs. 2 and 3. The proposed gripper is derived 

by linear motor that consists of DC motor and power screw and moves the two jaws to 

grasp the object. The surface of the gripper is fitted by silicon rubber that has the desired 

softness as well as the generation of relatively high ESC when slides or being in contact 

and separation with different types of objects, Fig. 4. The rotation of the DC motor causes 

the linear motion of the two nuts leading to the contact and separation of the two jaws and 

the object.  

 

 

 

Fig. 1 The proposed gripper. 

 

Fig. 2 Distribution of ESC on the surfaces of gripper and object during contact.  
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Fig. 3 Distribution of ESC on the surfaces of gripper and object after separation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Triboelectric series of the proposed materials, [27]. 
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Fig. 5 Distribution of ESC on the surfaces of the left jaw of the gripper and object after 

separation.  

For the proposed gripper, it is aimed to control the sliding of the object on the surface of 

the gripper and prevent the excessive increase of the gripping force. The right jaw. Figs. 2 

and 3 is responsible to control the slip and sliding of the object from the gripper.  The 

feedback action of the system depends on the triboelectric effect, where during contact 

there no ESC generated on the copper sheet, Fig. 2. It is expected that the contact 

electrification will be produced at the contact surfaces and generates positive and negative 

ESC.  After separation of the two contact surfaces, that represents the condition of slip or 

sliding of the object, the copper sheet will gain positive ESC and voltage difference will be 

induced between the copper sheet and the ground that generate a current. ESC generated 

on the copper sheet works as feedback signals to increase the gripping force by increasing 

the input voltage of the copper coil, where the magnitude of the electric field increases and 

consequently the adhesion force between the jaw and object increases so that  the object  

can be grasped grasp tightly, Fig. 3. 

 

As discussed above, it is revealed that triboelectrification is the base of the feedback signals 

when the object slides and separates from the gripper. The feed back signal may increase 

the input voltage of the driving motor in a step of increasing the gripping force. The 

function of the left jaw, Fig. 5, is to control the gripping force. The jaw is fitted by segments 

of silicon rubber to allow their deformation due to the increase of the gripping force. It is 

expected that as the deformation of the segments increases, their surfaces in contact with 

copper sheet slide generating ESC that will be considered as the source of the induced 

voltage to be fed back to the comparator to decrease the input voltage to the DC motor.  



56 
 

 
 

Fig. 6 Block diagram of the grip force control. 

 

Closed-loop control system was suggested by using gripping force signals as feedback to 

form a closed loop to achieve reliable grasping, Fig. 6, where the block diagram of the 

force control system contains reference input of the voltage. The contact force feedback of 

the gripper should enable the system to perform fast contact detection and protect the 

gripper from breakdown. The slippage of the object on the jaw surface can be detected by 

the variation of the contact forces applied at the surface of gripping jaw that influences 

the magnitude of ESC generated on the sliding surfaces.  

 

The gripping force feedback of the gripper offers secured grasping with no excessive 

forces. The feedback voltage induced by ESC will be integrated in the input voltage of the 

driving motor to control the reference input and consequently influences the force of 

gripping. 

  

CONCLUSIONS 

Proposed design of control system to guarantee secure grasp of the object is introduced.  

The base of the feedback signals depends on triboelectrification, where the feed back signal 

generated from the ESC may increase the input voltage of the driving motor to increase 

the gripping force. The gripper surface is fitted by segments of silicon rubber of high 

deformation to control the gripping force. Besides, silicon rubber is an active electrostatic 

charged material. Therefore, as the deformation of the segments increases, their surfaces 

in contact with copper sheet slide generating ESC that will be used as the source of the 

induced voltage to be fed back to the comparator to decrease the input voltage to the DC 

motor.  
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