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ABSTRACT 

Triboelectric Nanogenerators are emerging technology with huge potential in a variety of 

fields, from green energy to self-powered sensors. They are the products of 

triboelectrification which causes a generation of electrostatic charges on any two surfaces 

that come into contact with one another. This study aims at investigating the behavior of the 

voltage output of many different triboelectric nanogenerators with load, in both contact and 

separation as well as sliding. 

 

It was found that, when the applied load on a TENG increases, the generated voltage 

increases linearly. The generated voltage at sliding was higher than that generated in contact 

and separation. Besides, rough contact surfaces generated relatively higher voltage especially 

at contact and separation due to the increase of the contact area subjected to friction.  

 

KEYWORDS 

Voltage, triboelectrification, contact and separation, sliding, rabbit fur, polypropylene, 

polytetrafluoroethylene, Kapton. 

 

INTRODUCTION 

It is well known that when two materials come into contact with one another, electric charges 

of equal but opposite values accumulate on each surface. This phenomenon is known as 

triboelectrification, [1 - 4]. Since triboelectrification is such a widespread phenomenon, 

reducing it when necessary is important, as it is hypothesized that electrostatic charges (ESC) 

can accelerate the growth of cancer cells, [5] and can cause fires, [6, 7], research was done to 

try to find ways to reduce the electrostatic charge generated by different textiles, like 

reducing the charge generated by polyester, [8], artificial turf, [9], and floors, [10]. It is not 

essential that in all circumstances, low ESC is desirable, for example, it is thought that masks 

and medical equipment can resist viruses like Covid-19 better if they have a negative charge 

generated on their surfaces, [11 - 14]. 

 

In order to predict the amount and type of charge generated on each surface when two 

surfaces come into contact, the triboelectric series was developed, [15 - 17]. It ranks materials 

by their likelihood of acquiring a positive charge when they come into contact with another 
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material. Thus, materials lower in the series are more likely to obtain a negative charge, in 

the triboelectric series, where polytetrafluoroethylene (PTFE), polypropylene (PP) and 

Kapton lie close to the bottom of the series, while rabbit fur lies close to the top of the series, 

[18]. 

 

Triboelectrification was recently used as a source of clean energy. If metal electrodes were 

placed on one surface of two different materials that are on the opposite ends of the 

triboelectric series, and the two materials were then forced to come into contact with one 

another, a potential difference will generate between the two electrodes due to the different 

charges that accumulate on both of them. If the two electrodes were shorted, a small current 

will pass between them, before an equilibrium state is reached. This device is known as a 

triboelectric nanogenerator (TENG). The TENG can be used in energy generation, [19 - 22] 

and self-powered sensors, [23 - 26]. The output voltage of a TENG can be predicted using 

the V-Q-x equation, [27]. 

 

Previous work has been done to obtain a relationship between the applied force on a TENG 

and its output voltage in contact and separation mode, it was found that in most cases, the 

voltage rises rapidly at first, then the rate of increase of voltage with force starts to decrease 

and the relationship becomes more and more linear, [28 - 30]. 

 

The present study aims to investigate the voltage generated from contact and separation as 

well as sliding of rabbit fur and polymeric materials.  

 

EXPERIMENTAL 

Eight different TENG terminals were made of aluminum foil adhered to the tested contact 

surfaces by a thin layer of double-face adhesive. The dielectrics used were rabbit fur, PP, 

PTFE and Kapton. The rabbit fur was adhered to a wooden cube of 40 × 40 ×40 mm3, while 

the polymeric materials PP, PTFE and Kapton in the form of tape were adhered to a 

polymeric base. Both rubber fur and polymeric tapes were fitted by an aluminum sheet of 

0.25 mm thickness to be used as terminals to measure the generated voltage resulting from 

contact and separation as well as sliding.   

 
Fig. 1 The measuring procedure. 
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Fig. 2 Rabbit Fur. 

 

 
Fig. 3 Rabbit fur sliding on Kapton. 

 

 
Fig. 4 PTFE counterface. 

 

The tested different dielectrics were pressed against each other under load varying from 3.3 

to 20.5 N and separated. Then the voltage between the two aluminum foil electrodes was 

measured using a voltmeter. This process was repeated 10 times for every load value for 
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every pair of dielectrics, and the average voltage values were calculated. The details of the 

measuring procedure and materials are shown in Figs. 1 – 4. During sliding the rabbit fur 

was slid along the length of 200 mm of the polymeric tapes and the voltage after separation 

was measured using a voltmeter. 

 

RESULTS AND DISCUSSION 

The results of this experiment are shown in Fig. 5 – 9, where the voltage generated from 

contact and separation as well as sliding of the tested materials is illustrated. As for rabbit 

fur and Kapton, Fig. 5, voltage significantly increased with increasing normal load at contact 

and separation as well as sliding. It can be noticed that the relationship between the normal 

load and the voltage is linear, however, this seems to contradict the previous results, [30], 

which describe the relationship between voltage and load as rapid rising at first, and then 

later plateauing and approaching a linear relationship after crossing a specific threshold. 

However, considering that those experiments were done at higher loads than the ones at 

which the threshold mostly exists. The linear relationship can be useful in most applications.  

Sliding of the tested specimens, the voltage generated was relatively higher than the voltage 

generated in contact and separation. The values of the voltage at 20.5 N load were 1200 and 

300 mV at sliding as well as contact and separation respectively. 

 

The voltage generated from contact and separation as well as sliding of rabbit fur on PP, Fig. 

6, significantly increased up to values higher than that observed for rabbit fur/Kapton. This 

behavior was expected due to the location of PP and rabbit fur in the triboelectric series. 

Further voltage increase was observed for the pair of rabbit fur/PTFE, Fig. 7, where the 

highest values were approximately 3000 and 4000 mV at contact and separation as well as 

sliding respectively. This observation can recommend those materials to be applied in TENG 

development. 

 

 
Fig. 5 Voltage generated from contact and separation as well as sliding  

of rabbit fur on Kapton. 
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Fig. 6 Voltage generated from contact and separation as well as sliding of rabbit fur on PP. 

 

 
Fig. 7 Voltage generated from contact and separation as well as sliding  

of rabbit fur on smooth surface of PTFE. 
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Fig. 8 Voltage generated from contact and separation as well as sliding of rabbit fur on 

roughened surface of PTFE by emery paper of 60 grit. 

 

 
 

Fig. 9 Voltage generated from contact and separation as well as sliding of rabbit fur on 

roughened surface of PTFE by emery paper of 120 grit. 

 

Further experiments were carried out to investigate the influence of the surface texture on 

the voltage generated from TENG. PTFE film was adhered by emery paper of 60 and 120 
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grit as substrates, Figs. 8 and 9. It was noticed that the roughened PTFE by 120 grit 

generated relatively higher voltage than that measured for 60 grit. That is clearly shown at 

contact and separation. It seems that as the number of asperities of the contacting surfaces 

increases the ESC increases. This can be attributed to the increase of the contact area of 

PTFE subjected to the friction of the fur fibers. 

 

CONCLUSIONS 

1. As the applied load on a TENG increases, the generated voltage increases. 

2. At the load range tested in this experiment, voltage increases linearly with load. 

3. At sliding, the generated voltage was higher than that generated in contact and separation. 

4. Increasing the number of asperities of the contacting surfaces increases the generated 

voltage. 
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