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ABSTRACT 

Lubricants play a crucial role in various industries such as automotive, manufacturing, 

and energy, where accurate demand forecasting is essential for maintaining efficient 

supply chains, reducing costs, and ensuring timely product availability. This study 

evaluates the performance of traditional time series forecasting models on forecasting of 

lubricants demand, with a specific focus on demand exhibiting a linear increasing trend 

as a prevalent pattern in many situations. The models tested include ARMA, ARIMA, 

SARIMA, and Triple Exponential Smoothing (TES), which are widely used for 

forecasting in scenarios with linear and seasonal patterns. Two datasets were selected 

based on their linear trend characteristics, representative of the steady and consistent 

growth in demand for lubricants across different industries. The datasets were split into 

training and test sets, with model parameters optimized to minimize the Akaike 

Information Criterion (AIC) . 

 

Performance was measured using metrics such as Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Results showed that 

SARIMA consistently outperformed the other models, with TES, ARIMA, and ARMA 

following in effectiveness. The study highlights the significance of accurate lubricants 

demand forecasting in improving supply chain efficiency. Furthermore, the presence of a 

linear increasing trend in demand data underscores the importance of selecting 

appropriate models that can effectively capture and project these trends, which are vital 

for informed decision-making in supply chain management of lubricant industries. 
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INTRODUCTION 

Accurate demand forecasting plays a vital role in ensuring that lubricants businesses can 

meet customer demand efficiently while minimizing costs associated with overstocking or 

stockouts, leading to effective supply chain management. Good demand forecasting leads 

to optimized inventory levels, reduced lead times, improved production planning, and 

ultimately enhanced customer satisfaction. The ability to predict future lubricants 
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demand with precision allows companies to stay competitive in today’s fast-paced 

markets, where consumer preferences and purchasing patterns can shift rapidly, [1]. 

Among the various patterns observed in lubricants demand data, a linear increasing trend 

is particularly significant. This trend is commonly seen in lubricants experiencing steady 

growth due to factors like market expansion, seasonal effects, or long-term consumer 

adoption. Accurately forecasting such trends is crucial for lubricants industries ranging 

from retail to manufacturing, where consistent demand growth can inform strategic 

decisions on inventory management, production scaling, and distribution logistics, [2] . 

Given the importance of capturing linear trends in demand data, several time series 

forecasting models have been developed to address this need. These models include 

traditional approaches like Autoregressive Moving Average (ARMA), Autoregressive 

Integrated Moving Average (ARIMA), Seasonal Autoregressive Integrated Moving 

Average (SARIMA), and Triple Exponential Smoothing (TES). Each of these models 

offers unique strengths in dealing with specific aspects of time series data, such as trend 

and seasonality, making them valuable tools for demand forecasting in various 

applications. Although those traditional methods are not the only forecasting methods, 

machine learning techniques are starting to invade the field well, improving the 

forecasting accuracy and increasing the ability of dealing with complex demand. 

However, machine learning techniques also have limitations, [3]. Therefore, the focus of 

this study will be the traditional approach. 

For instance, S. Makridakis et al., [4], aimed to evaluate the forecasting accuracy of 

various extrapolative time series methods through a structured competition. The objective 

is to identify which methods perform best under different conditions and to understand 

the factors influencing forecasting accuracy. The study concluded that users could 

improve forecasting accuracy by selectively choosing methods based on the type of data 

and forecasting horizon. It emphasized that there is no universally best method; rather, 

the effectiveness of a method can varies depending on the context. Everette S. Gardner, 

Jr., [5], aimed to review and evaluate the methodologies and practices associated with 

exponential smoothing in forecasting by providing guidelines for the application of 

exponential smoothing techniques. The paper concludes that the Holt-Winters method is 

generally favored for seasonal data, while Brown's linear trend model is noted for its 

theoretical advantages. J.W. Taylor, [6], aimed to explore and evaluate a new forecasting 

method that incorporates damped multiplicative trends into exponential smoothing 

techniques. The objective is to assess the effectiveness of this method compared to 

traditional approaches, particularly the Holt and Holt-Winters methods, which typically 

use additive trends. The findings indicate that the damped Pegels method performs 

competitively, often slightly outperforming the damped Holt method, particularly in 

series with strong trends. L. Elneel, M. S. Zitouni, H. Mukhtar, and H. Al-Ahmad, [7], 

investigated the forecasting of global mean sea level (GMSL) changes by analyzing the 

interrelationships among various climatic factors, including CO2, CH4, ocean heat, and 

temperature. The primary objective is to understand how these factors influence GMSL 

and to evaluate the effectiveness of different time series analysis models in predicting sea 

level changes. They concluded that while CO2 and temperature are critical indicators of 

GMSL changes, the direct influence of GMSL on these variables is not statistically 

significant. The ARIMA and Prophet models demonstrate good performance in 
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forecasting, with the Prophet model showing higher confidence intervals for long-term 

predictions. 

This paper focuses on evaluating the performance of these models on datasets 

characterized by a linear increasing trend. By comparing their effectiveness, we aim to 

provide insights into which models are best suited for lubricants demand forecasting in 

scenarios where demand consistently rises over time. The following sections will explore 

the methodology used in this study and present the results of our analysis, offering 

guidance on model selection for practitioners dealing with similar demand patterns. 

 

METHODOLOGY 

This section states the main steps of obtaining a forecast using various traditional models: 

Autoregression Moving Average (ARMA), Autoregression Integrated Moving Average 

(ARIMA), Seasonal Autoregression Integrated Moving Average (SARIMA), and Triple 

Exponential Smoothing (TES). The steps are targeting the best parameters combination 

of the candidate models to obtain the best result avoiding any possibility of overfitting. 

The Auto Regression Moving Average Model 

The ARMA model is a statistical method used to forecast future values of a time series 

variable based on its past values [8]. ARMA is a combination of two models: Auto-

regressive (AR) model and Moving Average (MA) model. The AR model explains how the 

present value of a time series variable depends on its past values, while the MA model ex-

plains how the present value depends on the past errors. The AR function uses a linear 

combination of past values weighted by coefficients, while the MA function incorporates 

past forecast errors to refine predictions. The steps of obtaining a forecast using the 

ARMA model are as follows: 

1. Data Preparation 

Organizing and formatting the data sets for the time series variable to ensure your data 

is in a time series format, with equally spaced intervals. Check for missing values, outliers, 

and seasonality in the data. This step is necessary in all other models so it will be excluded 

from further sections for brevity . 

2. Model Specification 

Determine the orders of the ARMA model (p, q) by looking at the autocorrelation function 

(ACF) for (q) and partial autocorrelation function (PACF) for (p). The number of lagged 

values of predictors and number of lagged forecast errors that are necessary for AR model 

and MA model respectively can be obtained by observing (ACF) and (PACF) . 

 

3. Model Estimation 

Estimate the coefficients of the ARMA model using a method such as maximum likelihood 

estimation or least squares estimation. The ARMA model is typically expressed as shown 

in (1): 

𝒀𝒕 = 𝑪 +  𝛗𝟏𝐘𝒕−𝟏 + 𝛗𝟐𝐘𝒕−𝟐 + ⋯ + 𝛗𝒑𝐘𝒕−𝒑 + 𝛉𝟏𝛆𝒕−𝟏 +   𝛉𝟐𝛆𝒕−𝟐 + ⋯ + 𝛉𝒒𝛆𝒕−𝒒 + 𝛆𝒕 (1) 
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4. Model Selection 

Among all possible number of lagged values that will be considered for AR model, the 

best model is selected based on AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion). (AIC) and (BIC) are statistical measures commonly used for 

model selection and comparison in the field of statistics and machine learning. Both 

criteria provide a way to evaluate the goodness of fit of different models and help in 

selecting the most appropriate model among a set of competing models. AIC was 

developed by Hirotugu Akaike and is based on information theory. It measures the quality 

of a model by considering both its goodness of fit and its complexity. The AIC is defined 

as in (2). BIC, also known as Schwarz criterion, is similar to AIC but places a higher 

penalty on model complexity. BIC is derived from a Bayesian framework and considers 

the sample size of the data. The BIC is defined as (3). The penalty term in BIC is more 

severe than in AIC due to the inclusion of the logarithm of the sample size. Similar to AIC, 

lower BIC values indicate a better model fit, but BIC tends to favor simpler models more 

strongly than AIC. 

𝑨𝑰𝑪 = −𝟐 𝐥𝐨𝐠 𝑳 + 𝟐𝒌 (2) 

𝑩𝑰𝑪 = −𝟐 𝒍𝒐𝒈 𝑳 + 𝒌 𝒍𝒐𝒈 𝒏 (3) 

5. Forecasting and Model Evaluation 

Use the estimated ARMA model to forecast future values of the time series variable. The 

forecasted values are obtained by recursively applying the ARMA model to the past 

observed values of the time series variable. Evaluate the performance of the ARMA model 

by comparing the forecasted values with the actual values using metrics such as mean 

squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE) 

shown in (4), (5), and (6) in order to compare it with the other proposed models. This step 

is necessary in all other models so it will be excluded from further sections for brevity. 

MSE = 
𝟏

𝑻
 ∑ (𝒙𝒕 − 𝒚𝒕)𝟐𝒕

𝒕=𝟏  (4) 

MAE = 
𝟏

𝑻
 ∑ |𝒙𝒕 − 𝒚𝒕|𝒕

𝒕=𝟏  (5) 

RMSE = (
𝟏

𝑻
 ∑ (𝒙𝒕 − 𝒚𝒕)𝟐𝒕

𝒕=𝟏 )
𝟏/𝟐

 (6) 

The Auto Regression Integrated Moving Average Model 

The ARIMA model is a statistical method used to predict future values based on past 

observations [8]. It is a combination of three components: autoregression (AR), 

differencing (I), and moving average (MA). The AR component involves using past values 

of the time series to predict future values. The MA component involves using past forecast 

errors to predict future values. The I component involves differencing the time series to 

make it stationary, which means that its statistical properties do not change over time. 

The steps of obtaining a forecast using the ARIMA model are as follows: 

1. Model Specification 
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Determine the order of the ARIMA model parameters by observing the (ACF) and 

(PACF) plots for p and q. Test the stationary and white noise by the augmented Dickey–

Fuller (ADF) and then select the best order of differencing or (d) for the time series based 

on ADF test . 

 

2. Model Estimation 

Estimate the coefficients of the ARIMA model using a method such as maximum 

likelihood estimation or least squares estimation. The differenced series at time t of the 

ARIMA model is typically expressed as in (7). Once the parameters p, d and q are selected, 

the model can be fit to the data using methods such as maximum likelihood estimation. 

𝜟𝒅𝒀𝒕 = 𝑪 +  𝝋𝟏𝜟𝒅𝒀𝒕−𝟏 + ⋯ +  𝝋𝒑𝜟𝒅𝒀𝒕−𝒑 +  𝜽𝟏𝜺𝒕−𝟏 + ⋯ + 𝜽𝒒𝜺𝒕−𝒒 + 𝜺𝒕 (7) 

3. Model Selection 

Selecting the best parameters value for p and q using (AIC) and (BIC) criteria . 

The Seasonal Auto Regression Integrated Moving Average Model 

The SARIMA model is a statistical model extending the ARIMA model to capture both 

seasonal patterns and non-stationarity in data [8]. The model is denoted as SARIMA (p, 

d, q) (P, D, Q, s), where p, d, and q are the non-seasonal orders, P, D, and Q are the 

seasonal orders, and s is the length of the seasonal cycle. The steps of obtaining a forecast 

using the SARIMA model are as follows : 

1. Model Specification 

For the selection of the parameters (p, d, q) (P, D, Q, s), we begin by identifying the 

seasonal period (s). This is done by examining the data plot and the autocorrelation 

function (ACF) plot to look for repeating patterns. The non-seasonal parameters (p, d, q) 

can be determined similarly to the ARIMA model. For seasonal parameters, s is 

determined by detecting the seasonal pattern repeated in ACF and PACF. D is obtained 

after applying seasonal differencing, checking if the seasonal pattern has been adequately 

removed by using the ADF test or visual inspection of the ACF. Significant spikes at the 

seasonal lags ACF and PACF Plots are indicators for Q and P respectively. 

 

2. Model Estimation  

Estimate the coefficients of the SARIMA model using a method such as maximum 

likelihood estimation or least squares estimation . 

3. Model Selection 

Selecting the best parameters value using (AIC) and (BIC) criteria . 

The Triple Exponential Smoothening Model 

Triple Exponential Smoothing, also known as Holt-Winters’ Exponential Smoothing [9], 

is an extension of the exponential smoothing method that allows you to model time series 

data with both trend and seasonality. It’s one of the most effective forecasting methods 

for data that exhibits both of these characteristics. The steps of obtaining a forecast using 

the TES model are as follows: 
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1. Model Initialization 

• Level Initialization: The initial level Lt in (8) is often set to the average of the first 

season data. 

• Trend Initialization: The initial trend Tt can be set as the average change in level over 

the first season, obtained from  (9)    

• Seasonal Initialization: The initial seasonal indices St can be estimated by (10) as the 

ratio of the observed value to the level for each point in the first cycle . 

• Forecast: Assuming additive demand patterns, the forecast of the data set can be 

obtained using (11): 

𝑳𝒕 =  𝜶 .
𝒀𝒕

𝒔𝒕−𝒎
+ (𝟏 − 𝜶). (𝑳𝒕−𝟏 + 𝑻𝒕−𝟏) (8) 

𝑻𝒕 =  𝜷 . (𝑳𝒕 − 𝑳𝒕−𝟏) + (𝟏 − 𝜷). 𝑻𝒕−𝟏 
(9) 

𝑺𝒕 =  𝜸 .
𝒀𝒕

𝑳𝒕
+ (𝟏 − 𝜸). 𝒔𝒕−𝒎 (10) 

𝑭𝒕+𝒌 = (𝑳𝒕 + 𝒌. 𝑻𝒕). 𝒔𝒕+𝒌−𝒎 
(11) 

2. Model Fitting 

The parameters α (the smoothing parameter for the level), β (the smoothing parameter 

for the trend), and γ (the smoothing parameter for seasonality) need to be optimized. This 

can be done using fit () function in python which automatically selects the parameters to 

minimize the loss function. The seasonal period m is also selected based on the domain 

knowledge of the data. 

3. Forecasting 

Once the model is fitted, you can use the final values of Lt, Tt, and St to forecast future 

values. 

RESULTS 

The candidate models in this study are tested on two data sets obtained from [10] and [11]. 

These datasets were selected based on their linear trend patterns and were then visually 

inspected using seasonal decomposition to identify their trend and seasonality patterns, 

as illustrated in Figure 1 for Dataset 1 as an example. The datasets were divided into 

training and test sets, with the training set used to fit the models and the test set reserved 

for model evaluation. Figure 2 displays Data set 1 split into training and test sets with an 

80 % to 20 % ratio, which aligns with the common practice of data splitting. The results 

of the candidate models for each data set are presented in the following sections. 
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Fig. 1 Seasonal decomposition of data set 1. 
 

 

Fig. 2 Splitting of data set 1 to train and test sets. 
 

Results for Data Set 1 

After analyzing Dataset 1 using seasonal decomposition graphs, it is clear that the data 

exhibits a linear increasing tr end and a seasonal pattern of 6 or 12. The ACF and PACF 

plots shown in Figures 3. a and 3. b were generated to detect significant lag values. Based 

on this analysis, Table 1 presents the parameters of each candidate model along with the 

various performance measures used for model evaluation, where the selected parameters 

are based on minimizing the AIC. Table 1 also includes the TES parameters obtained 

after fitting the model and its performance compared to other models. Figure 4 shows the 

plot of forecasts of all models against the test set. These results conclude that the SARIMA 

has the best performance for data set 1 among all candidate models. TES comes next and 

then ARIMA. With the ARMA has the worst performance. 
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(a) (b) 

Fig. 3 Analysis of data set 1 using different plots, where: (a) ACF of data set 1; (b) PACF 
of data set 1. 

Table 1. Models parameters and performance for data set 1. 

Model Model Parameters MSE RMSE MAE 

ARMA (1,2) intercept 14871.1739 121.9474 104.0142 

ARIMA (1,1,4) intercept 4835.331 69.5365 60.0942 

SARIMA (2,1,1) (0,1,1) [12]  186.7501 13.6657 11.6480 

TES 
 𝜶 = 0. 695, 𝜷 = 5.961, 𝜸 = 

1.219 

511.8 22.623 19.3039 

 

 

Fig. 4 All model forecasts vs test set of data set 1. 

Results for Data Set 2 

The analysis of this data through seasonal decomposition indicates a linear trend and 

seasonal factor of 12. After the proper selection of the parameters of the candidate models 

from ACF and PACF shown in Figures 5.a and 5.b, the error measures of each model 

shown in Table 2 indicate again that the SARIMA has the best performance. 
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(a) (b) 

Fig. 5 Analysis of data set 2 using different plots, where: (a) ACF of data set 2; (b) PACF 
of data set 2. 

Table 2 Models parameters and performance for data set 2. 

Model Model Parameters MSE RMSE MAE 

ARMA (5,5) 90.7493 9.5262 7.5507 

ARIMA (2,1,1) intercept 187.8405 13.7055 11.5160 

SARIMA (0,1,4) (0,1,1) [12]  14.9952 3.8724 3.3210 

TES  𝜶 = 0.392, 𝜷 = 4.705, 𝜸 = 0.356 65.1872 8.0739 6.9027 

 

 

Fig. 6 All model forecasts vs test set of data set 2. 

DISCUSSION 

The analysis of the results reveals that the SARIMA model consistently outperforms other 

traditional time series models in handling data with both a linear increasing trend and 

seasonal components. SARIMA’s superior performance is attributed to its capacity to 

model both non-seasonal and seasonal variations simultaneously. This makes it highly 

suitable for lubricants demand forecasting in situations where seasonality, alongside 

steady growth, plays a critical role. Its effectiveness in Dataset 1, where these patterns 

were prominent, underscores its reliability for such use cases. The Triple Exponential 

Smoothing (TES) model also performed well, particularly in datasets with clear seasonal 

fluctuations. TES's ability to account for both trend and seasonality ensures it remains a 

robust choice for forecasting in situations where demand patterns are primarily additive. 

However, its slightly lower performance compared to SARIMA suggests that TES may 

not capture more complex seasonality as effectively. 
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On the contrary, the ARIMA model, although useful for datasets with a strong trend, 

struggled to perform well in Dataset 2, which exhibited clear seasonality. Its limited ability 

to model seasonal components resulted in poorer accuracy compared to SARIMA and 

TES. This highlights ARIMA’s limitations in scenarios where seasonality is integral to the 

data. However, ARIMA remains a valid choice for datasets where trends dominate but 

seasonality is minimal or absent. The ARMA model, which performed the weakest overall, 

failed to capture the increasing trend in Dataset 1 and was only somewhat effective in 

Dataset 2, where the linear trend was less pronounced. This reinforces the importance of 

carefully selecting forecasting models based on the specific characteristics of the dataset. 

ARMA’s simplicity is its strength in stable, non-trending datasets, but it lacks the 

sophistication required for complex demand forecasting with both trend and seasonal 

components . 

These findings underscore the critical need for lubricant businesses and practitioners to 

carefully assess the underlying patterns in their data when selecting a forecasting model. 

Models like SARIMA, which can simultaneously address both trend and seasonality, 

provide the best overall performance for datasets exhibiting such characteristics. 

Furthermore, even slight improvements in forecast accuracy, such as those achieved by 

SARIMA, can have substantial benefits for lubricant businesses, including more efficient 

inventory management, reduced costs, and improved customer satisfaction. 

 

CONCLUSIONS AND FUTURE WORK 

This study has demonstrated the importance of selecting appropriate time series 

forecasting models for lubricants demand forecasting where linear increasing trend and 

seasonality existed. SARIMA emerged as the most effective model, capable of accurately 

capturing both trend and seasonal patterns, making it a highly versatile option for 

demand forecasting in a variety of industries. TES also performed well, proving valuable 

in cases where seasonality was dominant, though it was less flexible in handling more 

complex patterns. ARIMA, while useful for purely trending data, showed limitations in 

datasets with significant seasonal components. ARMA, with its simplicity, was the least 

effective in this study, reinforcing the need for more sophisticated models in demand 

forecasting. 

The results of this study highlight that even small improvements in lubricants demand 

forecasting precision can lead to significant gains in supply chain management. Accurate 

demand forecasting can drive better decision-making, optimize inventory levels, and 

reduce operational costs. For future research, incorporating more advanced models, such 

as ARFIMA or structural time series models, and exploring the impact of external 

variables, such as economic conditions, could further improve the accuracy and 

applicability of demand forecasting in various real-world contexts. For the future work 

of this research, other factors affecting the lubricants demand can be considered in 

further study with models that can handle different factors on demand. 
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