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ABSTRACT 

The main objective of this work is to investigate the influence of multi-walled carbon 

nanotubes (MWCNTs) on the hardness and wear of polymethyl methacrylate (PMMA) 

reinforced by MWCNTs of 0.1, 0.2, 0.3, 0.4 and 0.5 wt. % contents. PMMA is prepared 

at both hot and cold acrylic resins to be used as denture base materials. The hardness of 

the proposed composites is measured by Shore D Durometer on the surface and side of 

the composites. Wear of MWCNTs/PMMA composites is measured by weighing the 

specimens before and after the test on a reciprocating wear tester.  

 

Based on the experiments, it is observed that the hardness of hot cured composites 

increased while wear decreased by increasing MWCNTs content unlike the cold cured 

composites,. In addition to that, it is shown that wear of hot cured composites decreased 

by increasing normal loads also unlike cold cured composites where wear increased by 

increasing normal loads. From this study, it can be concluded that hot cured composites 

are better than cold cured composites as denture base materials.  
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INTRODUCTION 

Poly (methyl methacrylate) (PMMA) is one of the most widely used industrial polymeric 

materials and still remains an active material for research at the cutting edges of science. 

Because of its good biocompatibility, reliability, dimensional stability, absence of taste, 

odor, tissue irritation and toxicity, [1], teeth adhesion, [2], insolubility in body fluids, 

relative ease of manipulation, good aesthetic appearance, [3], and color stability, [4], 

PMMA based materials are widely used as biomaterials. Nowadays, PMMA finds 
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applications not only in dentistry but also in areas such as transparent glass substitutes, 

interior design, transparent dielectric films, [5], acrylic paints, [6], and microcellular 

foams, [7]. Still, one of the most attractive applications of PMMA based materials is in 

various biomedical applications such as intraocular lenses, [8], bone cement in 

orthopedic surgery, [9], and removable partial denture [10].  

 

Carbon nanotubes (CNTs) are tiny tubes with diameters of a few nanometers and 

lengths of several microns made of carbon atoms. Since the discovery of this form of 

carbon atoms, [11], in 1991, many attentions have been drawn to use the outstanding 

physical and chemical properties of CNTs such as high Young's modulus 

(approximately 1 TPa), tensile strength, and excellent thermal and electrical 

conductivities, [12]. Carbon nanotubes have been used in various fields of applications in 

recent years due to their high physical, chemical, and mechanical properties, [13]. One 

of these fields is composite materials in which CNTs are added to a matrix not only as 

reinforcement but also to obtain other physical and chemical properties such as 

electrical conductivity and corrosion resistance. Carbon nanotubes are specially 

introduced into polymer matrices like epoxy to fabricate polymer matrix 

nanocomposites which presents a new generation of composite materials, [14 - 18]. 

Increase in strength and Young's modulus of fabricated double-walled carbon 

nanotubes/epoxy nanocomposites was reported at nanotube content of 0.1 wt. %, [14] s 

the resulting nanocomposites. The effect of dispersed multi-walled carbon nanotube 

(MWCNT) on the enhancement of elastic modulus in an epoxy system was investigated, 

[15].. The enhancement of strength and Young's modulus of phenolic composites 

reinforced by single-walled carbon nanotubes was reported, [16]. 

 

In recent years, researchers across the globe have focused their attention on tailoring 

polymer Nano composites by filling Nano dimension materials as filler. This has 

exhibited better mechanical, thermal, optical and electronic properties as compared to 

that of macro composite because of molecular level interaction between filler and 

polymer, [19 - 26]. After the discovery carbon nanotubes (CNTs) in 1991, and its 

versatile properties, structural dimension and high aspect ratio it has become a natural 

choice as filler to tailor various amenable properties like electrical, thermal and 

mechanical, [27, 28]. Keeping in view the requirement of high stiffness strength together 

with low weight and enhanced mechanical, optical, thermal, dielectric and electrical 

properties, filler reinforced polymer composites find broad spectrum applications in 

aerospace and biomedical, [29]. Recently, work has also been done to reinforce bone like 

hard particles and iron doped hydroxyapatite nanoparticles into a polymer matrix for 

application as a substrate for hard tissue replacement in tissue engineering domains and 

for the fabrication of composite scaffold, [30, 31]. Amongst the polymers, we have used 

polymethyl methacrylate in the present investigation because of its less viscous nature, 

amorphicity, optical clarity, low cost and miscibility of CNTs in PMMA which is quite 

good. 
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In the present work, the influence of multi-walled carbon nanotubes (MWCNTs) on the 

hardness and wear of polymethyl methacrylate (PMMA) reinforced by MWCNTs is 

investigated. 

EXPERIMENTAL 

MATERIALS 

The matrix materials used in this study is Polymethyl methacrylate (PMMA) and the 

fiber is Carbon Nanotubes (MWCNTs) as shown in Fig1. PMMA is used in two types; 

one as cold cured acrylic reins and the other one as heat cured acrylic reins, as 

investigated in Figures (2, 3). Table 1 shows the properties of PMMA as acrylic resins, 

while table 2 shows the details of MWCNTs. 

 

Table 1 Typical Properties of Acrylic PMMA 

PROPERTY VALUE 

PHYSICAL 

Density (lb/in³) 

(g/cm³) 

0.043 

1.18 

Water Absorption, 24 hrs. (%) 0.3 

MECHANICAL 

Tensile Strength (psi)  8000-11000 

Tensile Modulus (psi)  350000-500000 

Tensile Elongation at Break 

(%)  
2 

Flexural Strength (psi)  12000-17000 

Flexural Modulus (psi)  350000-500000 

Compressive Strength (psi)  11000-19000 

Compressive Modulus (psi)  - 

Hardness, Rockwell  M80-M100 

IZOD Notched Impact (ft-lb/in)  0.3 

THERMAL 

Coefficient of Linear Thermal 

Expansion(x 10-5 in./in./°F) 
5 - 9  

Heat Deflection Temp (°F / °C) 

at 264 psi  
150-210 / 65-100  

Melting Temp (°F / °C)  265-285 / 130-140  

Max Operating Temp (°F / °C)  150-200 / 65-93  

Thermal Conductivity  

(BTU-in/ft²-hr-°F) 

 (x 10-4 cal/cm-sec°C) 

 

3.9 

1.2 

Flammability Rating  - 

ELECTRICAL 

Dielectric Strength (V/mil) 

short time 
400 

Dielectric Constant at 60 Hz  4 

Dissipation Factor at 60 Hz  0.05 

OPTICAL Light Transmission, minimum 92 
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Fig. 2 Test specimen. 
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Refractive Index  1.48-1.50 

 

 

 

Table 2 Details of MWCNTs. 

Diameter, (nm) Length, 

(μm) 

Surface area, 

(m2/g) 

Purity, % 

8 10-30 90-350 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEST SPECIMENPREPARATION 

Test specimens have been made of PMMA. The MWCNTs were added in different 

contents of 0.1, 0.2, 0.3, 0.4 and 0.5 wt. %. Three specimens have been fabricated from 

PMMA (as received)  and the other specimens have been fabricated by adding the 

MWCNTs contents to the PMMA powder in a glass beaker, then mixed for 20 second 

and added to the mold of specimens of cylindrical shape as shown in Figs. 2, 3.  The 

molds were put in water bath at 100°C for 30 second and then ejected and left for bench 

cooling.  Figures 4, 5 show samples of PMMA and PMMA/ MWCNTs composites.  

 

 

 

 

 

 

 

 

TEST METHOD 

1-HARDNESS TEST 

Fig.1 Multi Walled Carbon Nanotubes (MWCNTs), [2] 
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Shore D Durometer instrument was used. Hardness was measured in three positions. 

The first one on the surface of the specimens (top and bottom), the second was on the 

side of the specimens and the third was on the surface in radial distance from center to 

the edge of all specimens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2- WEAR TEST   

(1) 

Fig. 3 Preparation steps of test specimens 1. MWCNTs, 2. PMMA,   3. Mixing, 4. Packing,  

5. Curing,   6. Bench Cooling, 7. Removing,   8. Grinding,    9. Final Specimen. 

 

Hot 

water 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Wear tests were done by weighing the specimens before and after the test to measure the 

weight loss, where the specimens were tested by making friction between specimens and 

emery paper (1000 grit size) using reciprocating sliding apparatus  as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION  

Fig.4 Sample of PMMA. 

material. 
 

Fig.5 Sample of PMMA material 

reinforced with MWCNTs. 
 

Fig. 6 The reciprocating wear tester; 1. Base,  2. Plate,  3. Linear Bearing, 4. Table,   

5. Emery Paper, 6. Sample, 7. Load Cell, 8. Normal Load. 

Motion Direction Motion Direction 
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1- HARDNESS  

Figures 7, 8 show the effect of MWCNTs contents on the hardness of surface and side of 

MWCNTs/PMMA composites. It can be noticed that the hardness of the hot composites 

increased by increasing the content of MWCNTs, this improvement in hardness may be 

due to the high strength and Young’s modulus of the MWCNT reinforcement and the 

heat treatment that increased hardness values due to an overlap and stacking, which 

reduced the movement of polymer molecules, which lead to increase the resistance of 

material to scratch, cut, and become more resistant to plastic deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6

S
h

o
re

  
D

 H
a
rd

n
es

s

MWCNTs Content in PMMA, %

cold specimen

Hot Specimen

Fig. 7 Effect of MWCNTs contents on the surface hardness 

 of MWCNTs/PMMA composites. 

Fig. 8 Effect of MWCNTs contents on the side hardness  

of MWCNTs/PMMA composites. 
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Figures 9, 10 show the hardness of the cold MWCNTs / PMMA composites in radial 

distance from the surface of the composites to the edge, while Figures 11, 12 show the 

hardness of the hot MWCNTs / PMMA composites in radial distance from the surface of 

the composites to the edge. It can be seen that the hardness increased at the edge in both 

hot and cold composites but decreased from the edge to the core of composites where the 

surface is cooled rapidly than the core of composites. For hot composites the hardness is 

higher than the cold one because of the reasons mentioned before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Hardness of cold MWCNTs/PMMA composites in radial distance from 

the center of the surface to the edge. 
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Fig.10 Hardness of cold MWCNTs/PMMA composites in radial distance from 

the center of the surface to the edge. 
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Fig.11 Hardness of hot MWCNTs/PMMA composites in radial distance from the 

center of the surface to the edge. 
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2- WEAR 

2-1 EFFECT OF MWCNTs CONTENT ON WEAR 

Figures 13, 14, 15, 16 and 17 show the effect of MWCNTs content on wear of 

MWCNTs/PMMA composites for both cold and hot composites under loads 6, 8, 10, 12 

14 N.  It is noticed that the wear for hot composites decreased by increasing MWCNTs 

content until of 0.2 and 0.3wt. % content, then wear increased. The decrease of wear 

may be due to the homogenous dispersion of MWCNTs in PMMA polymer up to 0.3 wt. 

%, where the strong linkages at the interface phases nanocarbon and PMMA result to 

increase the coherence of the mixture, while the increase of wear after that content may 

be due to the inhomogeneous dispersion of MWCNTs in PMMA polymer causing more 

agglomerations of the carbon nanotubes inside polymer matrix that reduced the 

reinforcing effects of the MWCNTs by acting as flaws in the resin. On the other side for 

the cold composites, it can be seen that wear increased by increasing MWCNTs content.  

 

Fig.12 Hardness of hot MWCNTs/PMMA composites in radial distance from 

the center of the surface to the edge. 
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Fig.13 Effect of MWCNTs contents on wear 

 of MWCNTs/PMMA composites at 6 N load. 
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Fig.14 Effect of MWCNTs contents on wear  

of MWCNTs/PMMA composites at 8 N load. 
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Fig.15 Effect of MWCNTs contents on wear  

of MWCNTs/PMMA composites at 10 N load. 
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Fig.16 Effect of MWCNTs contents on wear  

of MWCNTs/PMMA composites at 12 N load. 
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2-2 EFFECT OF NORMAL LOAD ON WEAR 

Figures 18, 19 show the effect of normal load on wear of cold composites under different 

contents of MWCNTs, while Figures 20, 21 show the effect of normal load on wear of 

hot composites. It can be noticed that for cold composites wear increased by increasing 

normal load. This behaviour may be due to the agglomerates that cannot effectively 

transfer stress. The local agglomerates formed stress point leads to the generation of 

fracture source, which increases wear. For hot composites, it can be shown that wear 

decreases for pure specimen and composites of 0.1, 0.2 and 0.3 wt. %, MWCNTs 

content, while wear increased for of 0.4 and 0.5 wt. % content because of the 

agglomeration of MWCNTs inside the PMMA matrix.    
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Fig. 17 Effect of MWCNTs contents on wear  

of MWCNTs/PMMA composites at 14 N load. 
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Fig.18 Effect of normal load on wear of cold cured MWCNTs/PMMA. 

composites. 

 

Fig. 19 Effect of normal load on wear of cold cured MWCNTs/PMMA. 

composites. 
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Fig. 20 Effect of normal load on wear of cold cured MWCNTs/PMMA.  
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Fig. 21 Effect of normal load on wear of cold cured MWCNTs/PMMA 

composites. 
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CONCLUSIONS 

From this study the followings can be concluded: 

1. Hardness of hot cured MWCNTs/ PMMA composites increases with increasing 

MWCNTs contents. 

2. Hardness of cold cured MWCNTs/ PMMA composites decreases with increasing 

MWCNTs contents. 

3. Wear of hot cured MWCNTs/PMMA composites decreases with increasing MWCNTs 

content up to 0.3 wt. % content, representing the optimum ones. 

4. Wear of hot cured MWCNTs/ PMMA composites increases at MWCNTs contents up 

to 0.4  and 0.5 wt. %. 

5. Wear of cold cured MWCNTs/PMMA composites is relatively higher than unfilled 

PMMA. 

6. Hot cured MWCNTs/ PMMA composites are recommended for medical and 

engineering applications.   
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